
SANDIA REPORT
SAND20XX-????
Unlimited Release
Printed ??

Albany Development: Getting Started

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND20XX-????
Unlimited Release

Printed ??

Albany Development: Getting Started

Abstract

This document is intended to help new developers get started contributing to Albany. Al-
bany is the main demonstration application of the AgileComponets strategy. It is a PDE
code that strives to be built almost entirely from functionality in reusable libraries (such as
Trilinos/STK/Dakota). Albany plays a large role in demonstrating and maturing function-
ality of new libraries, and also in the interfaces and interoperability between these libraries.
It also serves to expose gaps in coverage of capabilities and interface. Another aspect of the
project is to serve as a template for writing new applications against Trilinos/STK/Dakota.
It uses CMake, CTest, and git, and grabs almost all configuration information from installed
Trilinos. Albany was granted OpenSource license to share with collaborators.

Albany is also the home for several application and algorithm projects that use and con-
tribute to the overall infrastructure. These include the LCM (Laboratory for Computatinal
Mechanics), QCAD (Quantum Computer Aided Design) and FELIX (Finite Element for
Land Ice eXperiments) applications, as well as algorthmic projects in embedded uncertainty
quantification, model order reduction, and maturation of the templated software stack in
Trilinos.

3

4

Contents

1 Introduction 9

Distinguishing Capabilities . 9

Physics Sets: what PDEs . 10

LCM: Labratory for Computational Mechanics . 10

Mechanics and Multi-Physics . 10

QCAD: Quantum Device Design . 11

Uncertainity Quantification (UQ) . 12

NEAMS . 12

FELIX . 12

Nuclear Energy Reactor . 12

Further development . 12

2 Building 15

Example cmake file to configure Trilinos . 15

Third Party Libraries . 18

Example CMake File for Albany . 19

3 Albany Directory Structure 21

Source Code Directories Albany/src . 21

Source Code Namespaces and File Naming Conventions 23

Example/Regression Directory Albany/examples . 24

Documentation Directories Albany/doc . 25

5

4 Developer Workflow 27

Development Using Git . 27

Development Using CMake . 30

5 Albany Mailing Lists 33

6 Albany Copyright and Licensing Info 35

References 37

6

List of Figures

7

List of Tables

8

Chapter 1

Introduction

Albany is the main demonstration application of the AgileComponets strategy. It is a
PDE code that strives to be built almost entirely from functionality in reusable libraries
(such as Trilinos/STK/Dakota). Albany plays a large role in demonstrating and maturing
functionality of new libraries, and also in the interfaces and interoperability between these
libraries. It also serves to expose gaps in our coverage of capabilities and interface. An-
other aspect of the project is to serve as a template for writing new applications against
Trilinos/STK/Dakota. It uses CMake, CTest, and git, and grabs almost all configuration
information from installed Trilinos. Albany was granted OpenSource license to share with
collaborators.

Albany is also the home for several application and algorithm projects that use and con-
tribute to the overall infrastructure. These include the LCM (Laboratory for Computatinal
Mechanics), QCAD (Quantum Computer Aided Design) and FELIX (Finite Element for
Land Ice eXperiments) applications, as well as algorthmic projects in embedded uncertainty
quantification, model order reduction, and maturation of the templated software stack in
Trilinos.

Distinguishing Capabilities

The highlight of Albany is the PDE assembly. The template-based generic programming
approach allows developers to just program for residual equations, and all manner of deriva-
tives and polynomial propogations get automatically computed with no development effort.
This approach uses Phalanx for rapid and flexible addition of physics, which works closely
with Sacado and Stokhos for automatic propagation of derivatives and UQ. Intrepid and
Shards packages are used for the local discretization.

A second strength of Albany is the demonstration of transformational analysis algo-
rithms. Albany demonstrates the clean use of all Solver/Analysis tools in Trilinosi (through
Piro, which was developed in Albany) including NOX, LOCA, Rythmos, Stokhos, and all
of Dakota. On any problem we not only get a solution, but can also get sensitivities, run
optimization problems, and perform uncertainty quantification. All of these approaches can
access all of the linear solver options in Trilinos that are exposed by the Stratimikos layer.

9

The third main strength is the early adoption of STK, the sierra toolkit libraries. This
includes the mesh database, IO, and will be growing soon to include mesh changes for
stk rebalance and stk adapt.

Also of note is that Albany is, and intends to remain, a Publically Available code base,
free of export control restrictions. This allows it to serve freely as a collaboration vehicle
with universities and other labs, and as a template for building applications from Trilinos.

Physics Sets: what PDEs

Albany strives for a bit of a paradigm shift, where a code is defined more by its analysis
capabilities and data structure choices, which are difficult to change, and less by the physics
set. Much of Albany was developed in FY08-10 for solving simple heat transfer and poisson
equations. With nonlinear source terms, this was adequate for developing and verifying all
the hooks for analysis algorithms from sensitivity analysis to UQ. Recenty, Navier-Stokes
equations have been added to the general Albany physics set. In FY11, two new projects
(LCM and QCAD) were funded to develop application codes on Albany. These physics sets
are developed in the Albany code, yet are distinct in many ways as well: C++ namespace,
project teams, and funding sources. More recenlty, other applications and algorithm research
projects have chose Albany as their home.

LCM: Labratory for Computational Mechanics

The first application project build on Albany is the LCM, or Laboratory for Computa-
tional Mechanics [Ostien-PI, Salinger, Mota, Foulk, Littlewood]. This project is creating
an OpenSource computational mechanics RandD code, with a particular emphasis on frac-
ture and failure models. The infrastructure in Albany, which is aimed at rapid development
of new physics with automated generation of analytic derivatives and sensitivities, is well
suited for trying out new discretizations and new material models. The links to Dakota and
handling of model parameter are set up to perform calibration and UQ studies. LCM serves
as a research tool that can be shared with academics. Successful research ideas and code
will be migrated to the production mechanics applications of Adagio and Presto. Albany
can link against the LAME material library, and we are looking at ways of getting derivative
info through it for more robust solution algorithms.

Mechanics and Multi-Physics

Many engineering applications are multi-physical, in which cases mechanical behaviors
are largely depending on both the constitutive responses and other physical processes taking

10

place within the solid. To accurately replicate and predict multiphysical phenomena, addi-
tional constraint(s) must be added to the governing equations such that all physical processes
are represented properly. LCM is equipped with a number of mixed finite element models
aimed to capture the following multiphysical phenomena: thermomechanics, poromechanics,
and hydrogen diffusion-deformation problems.

As the name implied, the thermomechanics problem deals with standard dissipative solids
under non-isothermal condition. In such a condition, deformation may generate heat while
heat diffusion may occur simultaneously within the body. In LCM, the thermomechanical
process is modeled by a multiplicative decomposition of deformation gradient which takes
account of the deformation induced by thermal expansion, elastic energy storage and plastic
dissipation. The balance of linear momentum is coupled with the balance of energy equation
to capture the coupling between the solid deformation and thermal diffusion processes.

Poromechanics problem concerns with porous solids infiltrated with liquid or gas. Ex-
amples of porous solids include bone, soft tissue, sand, clay, rock and concrete. The
hydraulic-mechanical coupling is two-way. On the one hand, deformation may trigger seep-
age within the porous media. On the other hand, hydraulic response may also introduce
time-dependence and gradient-dependence into the mechanical behavior as the transient dif-
fusion takes place. In the case where pore-fluid is trapped inside the host matrix, coupling
between the solid and fluid constituents may lead to isochoric deformation. In LCM, this
coupled physics is modeled via equal-order finite element spaces for displacement and pore
pressure. Since this discretization choice may lead to spurious oscillation, an adaptive pres-
sure projection stabilization scheme is introduced to guarantee stable numerical solutions in
both infinitesimal and finite deformation regimes. A concurrent coupling is used such that
a phenomenon called Mandel-Cryer effect can be properly captured.

In addition, LCM is also capable of modeling hydrogen transport within metals. This
model is used to analyze how presence of hydrogen affects fracture of metals in various
concentration levels. Since hydrogen-gas is increasingly popular to be used as an energy
source, hydrogen embrittlement of metals is a key material issues one needed to address for
future energy security. Mathematically, hydrogen transport can be modeled as a nonlinear
convection-diffusion problem, in which the dislocation density may act as a source term that
affects the distribution of hydrogen between the lattice site and the trapped site. To avoid
spurious solutions commonly exhibited in convection-diffusion problem at low diffusivity
limit, we introduce an adaptively, projection based stabilization scheme, which may reduce
to lumped and higher-order mass formulation in one dimension.

QCAD: Quantum Device Design

The other new application code built on Albany is the QCAD quantum dot design LDRD
(Schrodinger-Poisson) [Muller-PI, Gao, Nielsen, Salinger]. A poisson solve for classical rep-
resentation of charge distribution is coupled to a Schrodinger region for quantum effects.

11

Embedded UQ

Uncertainity Quantification (UQ)

Albany is also serving as a main development and demonstration environment for em-
bedded UQ research [Phipps-PI, Wildey]. By leveraging the templated fill environment,
polynomial representations can be directly propogated through the physics assembly. Many
issues with data structures, parallelization, and linear algebra are being addressed.

NEAMS

FELIX

A new project, as of late FY12, using Albany as a PDE solver is the PISCEES SciDAC-3
project joint between the BER ans ASCR divisions of the office of science. This project is de-
veloping simulation tools for Ice Sheet dynamics (targeting Greenland and then Antarctica).
The initial models going into the FELIX (Finite Element Land Ice Experiments) namespace
within Albany area a 3D Stokes model with nonlinear viscosity formulation plus 2− 3 other
models that are simplifications of Stokes. This project will drive much development in UQ
through interactions with Dakota. One unique feature of this project is that it will be able
to use a mesh from LANL’s MPAS framework, putting to test the abstraction layer that
we put between the finite element asembly and the concrete STK Mesh implementation.
Long term plans include adjoint for distributed boundary condition parameters, coupled
temperature solves, and implicit advection of the Ice Sheet. The plan is for this code to be
integrated into the CESM Community Earth System Model at NCAR as an option for the
CISM Community Ice Sheet Model.

Nuclear Energy Reactor

Further development

The new applications have exposed many weaknesses in the Albany code, and more im-
portantly, some gaps in the aggregate Agile Components infrastructure. For instance, an
initial implementation in Trilinos of time integrators has been developed in responses to the
needs of the transient dynamics problem. Future development includes: load balancing and
uniform mesh refinement, transitioning to Tpetra and a templated software stack, being
a testbed for embedded UQ methods, early adoption of architecture-aware PDE assembly

12

kernels, and eventually a full error estimation and adaptivity capability. Albany is making
the transition from a demonstration prototype to a research code. It still seriously lacks
full boundary condition support, any multi-physics capability, post-processing, and docu-
mentation (all the hard stuff). The sister code Drekar [Pawlowski, Cyr] has developed the
infrastructure for multi-physics applications with varying physics and discretizations, which
Albany does not support.

13

14

Chapter 2

Building

Building Albany, at a minimum, requires nothing but an installation of Trilinos. The
AgileComponents philosophy is geared toward usage of multiple packages from the Trilinos
suite of codes. Therefore, task number one is the acquisition, build, and installation of
Trilinos. This chapter will layout the requirements for building the necessary third party
libraries, as well as building and installing the proper Trilinos packages.

It is assumed that at this point you have a copy of the Albany code, possibly via a clone
of the git repository. If not, see the beginning of Chapter 4 to see how to use git to get
development versions of Albany and Trilinos. These commands require an account on the
machine software.sandia.gov and being a member of the trilinos UNIX group.

In the Albany/doc directory there are some example script that provide templates for
various steps of the build process. In particular, the configuration stage for Trilinos requires
a CMake script, and an example can be found in the trilinos-cmake file, which will be
reproduced here for completeness.

Example cmake file to configure Trilinos

#/**\

#* Albany, Copyright (2010) Sandia Corporation *

#* *

#* Notice: This computer software was prepared by Sandia Corporation, *

#* hereinafter the Contractor, under Contract DE-AC04-94AL85000 with *

#* the Department of Energy (DOE). All rights in the computer software*

#* are reserved by DOE on behalf of the United States Government and *

#* the Contractor as provided in the Contract. You are authorized to *

#* use this computer software for Governmental purposes but it is not *

#* to be released or distributed to the public. NEITHER THE GOVERNMENT*

#* NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR *

#* ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice *

#* including this sentence must appear on any copies of this software.*

#* Questions to Andy Salinger, agsalin@sandia.gov *

15

#**/

This is a sample Trilinos configuration script for Albany.

#

Boost is required, but just needs to be unpacked,

not compiled. Version _1_40 or newer.

#

There are two optional build choices, commented below

these are for Dakota and Exodus I/O capabilites.

#

Albany automatically queries the Trilinos build to

know if these capabilities are enabled or disabled.

#

#

All paths must me changed for your build (search "agsalin")

#

rm CMakeCache.txt

cmake -D CMAKE_INSTALL_PREFIX:PATH=/home/agsalin/Trilinos/build/install \

-D Boost_INCLUDE_DIRS:FILEPATH="/home/agsalin/install/boost_1_47_0" \

-D CMAKE_BUILD_TYPE:STRING=NONE \

-D Trilinos_WARNINGS_AS_ERRORS_FLAGS:STRING="" \

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=OFF \

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=OFF \

\

-D Trilinos_ENABLE_Teuchos:BOOL=ON \

-D Trilinos_ENABLE_Shards:BOOL=ON \

-D Trilinos_ENABLE_Sacado:BOOL=ON \

-D Trilinos_ENABLE_Epetra:BOOL=ON \

-D Trilinos_ENABLE_EpetraExt:BOOL=ON \

-D Trilinos_ENABLE_Ifpack:BOOL=ON \

-D Trilinos_ENABLE_AztecOO:BOOL=ON \

-D Trilinos_ENABLE_Amesos:BOOL=ON \

-D Trilinos_ENABLE_Anasazi:BOOL=ON \

-D Trilinos_ENABLE_Belos:BOOL=ON \

-D Trilinos_ENABLE_ML:BOOL=ON \

-D Trilinos_ENABLE_Phalanx:BOOL=ON \

-D Trilinos_ENABLE_Intrepid:BOOL=ON \

-D Trilinos_ENABLE_NOX:BOOL=ON \

-D Trilinos_ENABLE_Stratimikos:BOOL=ON \

-D Trilinos_ENABLE_Thyra:BOOL=ON \

-D Trilinos_ENABLE_Rythmos:BOOL=ON \

-D Trilinos_ENABLE_MOOCHO:BOOL=ON \

-D Trilinos_ENABLE_OptiPack:BOOL=ON \

-D Trilinos_ENABLE_GlobiPack:BOOL=ON \

16

-D Trilinos_ENABLE_Stokhos:BOOL=ON \

-D Trilinos_ENABLE_Isorropia:BOOL=ON\

-D Trilinos_ENABLE_Piro:BOOL=ON \

-D Trilinos_ENABLE_STK:BOOL=ON \

-D Trilinos_ENABLE_Teko:BOOL=ON \

\

-D Trilinos_ENABLE_Mesquite:BOOL=OFF\

-D Trilinos_ENABLE_Zoltan:BOOL=ON\

-D Trilinos_ENABLE_FEI:BOOL=OFF\

\

-D Trilinos_ENABLE_TESTS:BOOL=OFF \

-D Piro_ENABLE_TESTS:BOOL=ON \

-D Trilinos_ENABLE_EXAMPLES:BOOL=OFF \

-D TPL_ENABLE_MPI:BOOL=ON \

-D TPL_ENABLE_Boost:BOOL=ON \

\

-D Phalanx_ENABLE_TEUCHOS_TIME_MONITOR:BOOL=ON \

-D Stokhos_ENABLE_TEUCHOS_TIME_MONITOR:BOOL=ON \

-D Stratimikos_ENABLE_TEUCHOS_TIME_MONITOR:BOOL=ON \

\

-D CMAKE_VERBOSE_MAKEFILE:BOOL=OFF \

-D Trilinos_VERBOSE_CONFIGURE:BOOL=OFF \

-D CMAKE_CXX_FLAGS:STRING="-g -O2 -fno-var-tracking" \

-D Trilinos_ENABLE_Export_Makefiles:BOOL=ON \

../

#

Optional build capabilities:

(1) TriKota is a Trilinos package that builds the

Dakota libraries, for optimization and UQ. See

TriKota web page for how to unpack Dakota.

Dakota requires boost libraries. See boost-make

sample script for how to build these libraries.

#

-D Trilinos_ENABLE_TriKota:BOOL=ON \

-D TriKota_ENABLE_DakotaCMake:BOOL=ON \

-D DAKOTA_ENABLE_TESTS:BOOL=OFF \

-D Boost_LIBRARY_DIRS:FILEPATH="$BOOSTDIR/lib" \

#

#

(2) These 5 lines regarding SEACAS/netcdf are needed

for reading exodus meshes, but require an

installed netcdf. Also used for Pamgen meshes.

-D Trilinos_ENABLE_SEACASIoss:BOOL=ON \

-D Trilinos_ENABLE_Pamgen:BOOL=ON \

17

-D TPL_ENABLE_Netcdf:BOOL=ON \

-D TPL_Netcdf_INCLUDE_DIRS:PATH=/home/agsalin/install/netcdf-4.0.1/include \

-D Netcdf_LIBRARY_DIRS:PATH=/home/agsalin/install/netcdf-4.0.1/lib \

After executing this script, it should suffice to do

% make && ctest && make install

where the enabled tests should pass. In the above script, this is just a handful of piro tests
which are a good indicator if the build was successful.

For runs using the exodus mesh database, which is the majority of examples and appli-
cations, it is necessary to have a set of the SEACAS tools installed on your machine. These
can now be built from Trilinos. We recommend a separate build for these (as opposed to
doing them as part of the Trilinos install above). The file Albany/doc/seacas-cmake is a
script that will configure trilinos to build these tools. Again, this should be followed by a
make; make install and making sure the executables, e.g. epu, are in your path.

Third Party Libraries

To build Trilinos with the aim of building Albany, a number of software dependencies
must be met. They are termed third party libraries (TPLs).

1. Git

2. A recent version of Boost

3. NetCDF - version ≥ 4.1.3 (version > 4.2 also requires HDF5)

4. CMake - version > 2.7 should be fine

5. Some version of MPI, possibly openmpi - version ≥ 1.4.3

6. BLAS/LAPACK - systeminstalled version on relatively modern Linux/Mac machine
works

7. Optional - a recent version (4.7) of GCC

There are some other products that can aid workflow.

1. eg – Easy Git, makes some things clearer and cleaner

2. doxygen/graphviz and dot - to build the doxygen documentation and visualize the
phalanx graphs

18

3. paraview to post-process

4. cubit for mesh generation (not currently free, for now)

5. Optional - php (a php server is required if you want a local build of the Albany website,
useful for visualizing documentation, but not necessary)

Example CMake File for Albany

The following cmake configuration script is enough to configure Albany.

#!/bin/bash

rm CMakeCache.txt

cmake \

-D ALBANY_TRILINOS_DIR:FILEPATH=<location_of_trilinos_install> \

-D CMAKE_VERBOSE_MAKEFILE:BOOL=OFF \

-D ENABLE_LCM:BOOL=OFF \

../

Note that the <location of trilinos install> needs to be exacly the path in the CMAKE INSTALL PREFIX

in the Trilinos build above. This is typically executed from a subdirectory of Albany such
as build or build linux mpi 20120920 depending on your personal directory-naming style.
Note, that the final ../ is the relative path to the Albany directory from the build direc-
tory where this script is invoked.

After invoking the script, it remains to build Albany and run the tests, which can be
accomplished from within the build directory using the following command.

% make && ctest

If everyting is well, all the tests should pass.

Numerous parts of the build process are taken from the Trilinos install. For instance, the
compilers, compiler flags, and any paths to netcdf, boost, blas, lapack, etc., are taken from
the Trilinos build and do not need to be repeated in the Albany configuration.

In addition, the Albany build system will auto-detect what packages were built in Trili-
nos and set defines in Albany to accommodate. For example, the presence of the Zoltan
package in the Trilinos install will trigger the definition of ALBANY ZOLTAN on compile lines.
Corresponding #ifdef ALBANY ZOLTAN lines in the source code will toggle the compilation
of capabilities in Albany that require Zoltan, such as stk rebalance. The same is true for
Dakota, SEACASIoss (for reading exodus files), and MPI (versus serial).

19

There are other CMake configuration options recognized by the Albany build system.
(In addition, CMake has a standard set that can be found at the CMake websote.) Many of
these are experimental options and not generally supported, but currrently include [default]:

ENABLE_LCM & Bool flag to enable LCM physics sets [off] \\

ENABLE_FELIX & Bool flag to enable FELIX physics sets [on] \\

ENABLE_ASCR & Bool flag to enable ASCR embedded UQ algorithm research [off] \\

ENABLE_LAME & Bool flag to enable links to the LAME material library [off] \\

LAME_INCLUDE_DIR & Path to installed Lame include directory \\

LAME_LIBRARY_DIR & Path to installed Lame lib directory \\

ENABLE_ALBANY_CI & Flag to enable links to the CI configuration interaction library [off] \\

ALBANY_CI_INCLUDE_DIR & Path to installed CI include directory \\

ALBANY_CI_LIBRARY_DIR & Path to installed CI lib directory \\

ALBANY_CXX_FLAGS & Extra flags for the C++ compiler appended to those from Trilinos \\

CMAKE_CXX_FLAGS & Flags for the C++ compiler overwriting those from Trilinos \\

20

Chapter 3

Albany Directory Structure

This Chapter is meant to orient a new developer to the directory structure of the Albany
repository. At the top level, Albany has three directories: src for the source code, examples
for the example problems (which also serve as the regression tests), and a doc documentation
directory.

Source Code Directories Albany/src

• Albany/src This top-level source code directory src contains much of the generic
Albany code that is application independent. This includes the top-level functionality
of Main routines and the factories for building the Trilinos piro solvers. The interface
to the physics sets is the Albany ModelEvaluator, a concrete implementation of a
central abstract layer in Trilinos.

Perhaps the most central piece of code is the Albany Application class. The con-
structor of this class orchestrates the building of the discretization (mesh), the problem
(physics set), initial guess, and responses. The methods in this class are called directly
from the Albany ModelEvaluator and compute the residual, Jacobian, responses, and
other main quantities. These functions are the boundary between the code that is
written specifically for the computation of these different quantities and the templated
code, where a single code base will generate different quantities based on an Evaluation
Type. That is, the different functions in this class for calculating a Residual vector or
Jacobian matrix both call the same method to evaluate the PDEs, yet with a differ-
ent template argument. This activates the Automatic Differentiation infrastructure in
Albany (more generally called template-based generic programming). Details of this
implementation are in the PHAL AlbanyTraits class. The data that needs to span
these two realms is packed in the PHAL Workset struct.

Also in the src directory are classes to handle states (fields besides the solution vector
that persist between subseqent solves), ”observers” that control the output and postr-
processing of solutions, and utility functions (such as a single file to manage different
parallel communicator abstractions and serial code).

• Albany/src/stk The stk source code directory contains information on the global
problem discretization. This includes all mesh data structures, parallel maps for so-

21

lution vectors, coordinates, and other fields, as well as the graph of the matrix. This
information is accessed by the rest of the code through the AbstractDiscretization

class, with accessor methods that are mainly two types: (1) Epetra data structures
for information that will require communication between processors, and (2) standard
vectors (Teuchos::ArrayRCP objects) for information that will not. A Tpetra branch
of the code is under development as well.

While the global discretization abstraction insulates the rest of the code from a specific
mesh database and implementation, currently the only concrete implementation is
through the STK Mesh library from Trilinos. The STM Mesh objects can be created by
reading them in from Exodus or generated by the Pamgen library, both of which use the
SEACAS and IOSS tools. Alternatively, simple meshes can be generated internally in
the code without the need for these libraries, including lines, rectangles (with quad or
triangle elements), and brick shape meshes. These are useful for many demonstration
a verification problems.

• Albany/src/problems The problems source code directory contains classes that in-
herit from an AbstractProblem. The (overloaded) word problem refers to a physics
set, and includes things like Heat Transfer, Poisson equation, and Navier Stokes. A
problem class registers a set of ”evaluators” from derived from the Phalanx package
in Trilinos that, in aggregate, will perform the assembly of the desired set of PDEs.
All problem register the basic set of finite element evaluators as well as one or more
problem-specific evaluators for computing diffusion operators, source terms, etc. Sim-
ilarly, Problems define boundary condition evaluators, responses, and declare state
fields (those that persist beyond one assembly).

We do not allow the Albany user to mix-and-match all physics (PDE terms) at run time
in an input file, but must construct a ”problem” where the physics terms are assembled.
These themselves can be written to have some degree of run time configuratbility.
However, for purposes of verification, reproducibility, and limiting user error, we have
made the choice to have physics sets hardwired into problem classes.

• Albany/src/evaluators The evaluators source code directory contains Phalanx
evaluators. Phalanx is a Trilinos package that allows users to build up physics sets from
individual unit operations. For instance, evaluators exist to interpolate nodal data to
quadrature points, to calculate diffusion operators, or to compute a source term. The
granularity of computation that occurs in an evaluator is free for a developer to choose.
Common finite element operations tend to have fine granularity, where an evaluator
performs a small well-defined task.

Phalanx is written to work seamlessly with the Evaluation Type templating for full
use of automatic differetiation. The main two places where template specialization is
required are the GatherSolution and ScatterResidual evaluators which seed (ini-
tialize) and extract the date to and from the automatic differentiation types. Almost
all other evaluators can be written just on the generic template type. Phalanx also
uses the multi-dimensional data arrays that are interoperble with those in the Trilinos
intrepid and shards packages.

22

In this directory, there are all the evaluotors that are common to all finite element
assemblies, as well as problem-specific evaluators for heat transfer, Navier-Stokes, the
QCAD Poisson and Schrodinger applications, and other applications. The LCM and
FELIX projects have moved evaluators speific to their applications into other directo-
ries just for organization purposes.

• Albany/src/responses The responses source code directory contains a growing li-
brary of responses, which are post-processing routines for quantities of interest. These
include several common responses that involve norms of the solution vector. Responses
that required finite element information, such as integrals of quantites over the mesh,
are all hooked up through the FieldManagerScalarResponseFunction function. This
triggers an assembly phase, using evaluators, much like the Residual and Jacobian
evalutations, and also make use of template-based generic programming.

• Albany/src/LCM The LCM source code directory contains application-specific code for
the LCM project, as escribedint he introduction. It contains problems and evaluators

directories that describe and implement the physics sets needed for these applications
domains. The problem classes assemble PDE descriptions using evaluators both from
the src/evaluators directory as well as the LCM/evaluators directory. There are ad-
ditional directories for LCM development, including a utils directory with a Tensor
library. Since LCM includes such a large code base to compile, there is a CMake con-
figuration option -D ENABLE LCM:=ON needed to enable this code base (POC: Ostien).

• Albany/src/FELIX The FELIX directory contains application-speciic code for the Ice
Sheet dynamics application described in the introduction. It contains problems and
evaluators directories that describe and implement the physics sets needed for this
application domain (POC: Kalashnikova).

• Albany/src/Hydride The Hydride directory contains application-speciic code for the
nuclear energy application of hydridization of cladding materials. It contains problems
and evaluators directories that describe and implement the physics sets needed for
this application domain (POC: Hansen).

• Albany/src/MOR The MOR directory contains source code specific to model order re-
duction. This includes the ability to collect and analyze snapshot information from
Albany runs and produce reduced order models (POC: Cortial).

Source Code Namespaces and File Naming Conventions

There are several C++ namespaces in use in Albany. Most of the code is in the Al-
bany namespace. This includes the general-purpose code in the src directory for problem
setup, the processing of the mesh, and setups of many problems (physics sets). Most new
development starts by default using the Albany namespace. There are opportunities to use
more namespaces to clarify the modularity of the code, such as between the solver code and
discretization/mesh code.

23

In addition to Albany, there are a few other namespaces in use to compartmentalize the
code:

• PHAL This namespace (short for PHalanx-ALbany) is for the code that derives from
the Phalanx base classes. This is the magic that allow for such rapid and flexible
implementation of new PDEs and terms. In addition to the evaluators, also in this
namespace are classes for the traits, data types, and workset that are integral to this
part of the code.

• LCM, QCAD, FELIX These namespaces are used to visually separate code specific to
those application projects. This can aid in figuring out what code is gerenal-purpose
or application specific and what parts of code can be excluded from lightweight com-
pilations.

File naming conventions are as follows.

• File Naming Conventions: prefix Most source code files adheres to the convention that
the file name is the same as the class name, with the namespace as the prefix. So the
class Albany::SolverFactory will have a filename starting with Albany SolverFactory.

• File Naming Conventions: suffix The code base that is not templated uses ”.hpp”
and ”.cpp” suffixes. For the templated code base, which is primarily the code in
the evaluators directories, we use the following naming conventions. There is a tiny
”file.cpp” file for explicit template instatiation, a file with ”file Def.hpp” extension
for the definition files with the source code in it, and ”file.hpp” for the header file.

Example/Regression Directory Albany/examples

Albany/examples This directory holds all the example problems for Albany, which also
serve as the regression tests.

Each directory holds one or more xml file that is the input file for the run. Separate
problems do not run off of separate executables. The physics set and solution method are
set in the input file. The large majority of examples run of of the same Albany executable,
which performs simulations and linearized sensititivity anaysis. Problems that perform opti-
mization or Dakota-based UQ use the AlbanyDakota or AlbanyAnalysis executables, while
intrusive UQ using the Stokhos package use the AlbanySG executable. Other Main*.cpp files
can exist to create other executables, but these are currently experimental only.

The input files for each example include a Regression Results section which compares
scalar responses, sensitivities, optimization results, and/or stochastic Galerkin results, to
trusted values. Disrepencies between these results increment an integer that is the return
code from main(). The ctest testing code uses this return code to decide pass/fail of tests.

24

(We would like to extend the regression process to incorporate an exodiff capability to test
the entire solution and the I/O capability.)

Many directories also include exodus files for specification of the finite element mesh,
although some problems run from internally generated meshes. These have been partitioned
using the decomp script from SEACAS. Both the serial and 4-processor versions of the exodus
file are typically included.

Documentation Directories Albany/doc

• Albany/doc This top-level documentation directory contains useful CMake scripts
with comments for configuring Trilinos, SEACAS tools, boost, and the albanyCI code.
These have worked at one time on one machine, but are (unfortunately) not tested, so
may drift out of date.

• Albany/doc/webpage The webpage directory contains html files for the Albany web
page. (The webpage has not been filled in with much detail.) On Sandia’s internal SRN
network, it can be view at https://development.sandia.gov/Albany/. Developers
are encouraged to expand the coverage and usefulness of these webpages, including the
Albany code as a whole as well as the project-specific tabs.

• Albany/doc/doxygen The doxygen directory contains necessary files so that doxygen
documentation of the source code will be generated. This is generated automatically
and linked to from the Albany webpage.

• Albany/doc/nightlyTestHarness This directory contains a set of shells scripts that
are used, with minor modifications, as the nightly test harness. One file with machine-
specific environment variables needs to be modifies (e.g. set andys env.in) an then
the test harness is run with ./run master.sh set andys env.in. This is currently
run under a cron job on four platforms nightly.

• Albany/doc/developersGuide The directory that holds this document. Please im-
prove and commit!

25

26

Chapter 4

Developer Workflow

This chapter consists of introductions to using Git and CMake in your development
workflow. Git is the source code control tool, and CMake is for configuration management
and compiling the code.

Development Using Git

The following are some workflow suggestions and general tips for using git. Of note is
the autorebase feature provided by git, which in essence, upon pulling hides away your local
work, updates your local repository against the remote master, and then applies your local
changes ”on top”. This is good and safe and should be done early and often. To set this up,
consult the following contents of the following gitconfig file.

===================== contents of ~/.gitconfig

[user]

name = <name>

email = <redacted>

[branch]

autosetuprebase = always

[color]

ui = true

branch = auto

diff = auto

status = auto

[core]

whitespace = -trailing-space,-space-before-tab

preloadingindex = true

preloadindex = true

[branch "master"]

rebase = true

27

====================== end contents

It is encouraged for anyone to, at least, provide the [user] section such that the checkin
messages are meaningful. You can do this by editing the .gitconfig file in your home directory
(or creating it if it is not there) to include the contents above, or some subset.

The following is then a list some useful git commands. Note most of the time git and eg
are interchangeable. However there are a few places where eg is arguably more useful.

• to clone Trilinos and Albany into ./Trilinos and ./Albany

% git/eg clone <user>@software.sandia.gov:/space/git/Trilinos

% git/eg clone <user>@software.sandia.gov:/space/git/Albany

• to pull the current repository

% git pull

• to push changes to the master

% git push

• to view the log of checkins to the repository

% git/eg log

NB: eg log is much cleaner

• to prepare local currently tracked modified files to be committed

% git/eg add/stage <path_to_file>/<file>

NB: git add and git stage work virtually the same in this case

• to prepare newly created files to be committed

% git/eg add <path_to_file>/<file>

• example workflow (using eg, but git would be the same)

28

% eg pull

<edit some files>

now build

% make

run the tests

% ctest

tests didn’t pass so

<fix some bugs>

build, run tests again

% make && ctest

#tests look good, commit local changes>

% eg add <path_to_file>/<file>

check that everything is kosher

% eg status

should say something like, "staged files ready to be committed"

% eg commit

don’t forget to write a nice one line description,

followed by more detail if you like

then pull and test again before you push

% eg pull

% make

% ctest

if nothing has broken

%eg push

• hypothetically, pulled changes don’t compile (this will happen)

how to recover

check the log to see if there is an obvious checkin causing the error

there will be a tag, something like master~#

then use the following syntax, I’ll use #=5 for demonstration

here eg is required

% eg reset --working-copy master~5

• another hypothetical, you have lots of changes locally, but you’d like to pull, and you
haven’t committed anything

you can use the stash command

% eg stash save workInProgress

now you can pull without issue

% eg pull

then if you want to, you can apply your changes

% eg stash apply workInProgress

then resolve conflicts as necessary

29

Development Using CMake

Need to add how to have a conditional ENABLE MYCRUD compile option.

The following are some general steps to add new evaluators or problems, as well as new
test problems to Albany CMakeLists. As an example, there are two newly created source and
header files belonging to Albany LCM myNewProblem.cpp, myNewProblem.hpp that you
would like to add to the CMakeLists (same steps apply for other types of Albany problems
or evaluators).

• Add new problem files in <path_to_Albany_directory>/src/CMakeList.txt at the
correspoinding section (in this example ALBANY_LCM)

LCM

IF(ALBANY_LCM)

SET(LCM_DIR ${Albany_SOURCE_DIR}/src/LCM)

LCM problems

SET(SOURCES ${SOURCES}

${LCM_DIR}/problems/myNewProblem.cpp

)

SET(HEADERS ${HEADERS}

${LCM_DIR}/problems/myNewProblem.hpp

)

ENDIF()

• To add a test problem to Albany examples, first create a new directory <path_to_Albany_directory>/examples/myNewProblem

• Within the new directory, create necessary input files to run the example, as well as a
CMakeLists.txt file. A simple example CMakeLists.txt file may include the following

1. Copy Input file from source to binary dir

configure_file(${CMAKE_CURRENT_SOURCE_DIR}/input.xml

${CMAKE_CURRENT_BINARY_DIR}/input.xml COPYONLY)

2. Name the test with the directory name

get_filename_component(testName ${CMAKE_CURRENT_SOURCE_DIR} NAME)

3. Create the test with this name and standard executable

add_test(${testName} ${Albany.exe})

NB: you may also copy and paste existing test examples in Albany, and modify ac-
cording to your new problem.

• Add in <path_to_Albany_directory>/examples/CMakeLists.txt the directory name
of the newly created example at corresponding sectioin (again, in this example ALBANY_LCM).

30

IF(ALBANY_LCM)

add_subdirectory{myNewProblem}

ENDIF()

• Compile and test to make sure the newly added problem passes ctest.

% cd <path_to_Albany_directory>/build

% make && ctest

Once it passes ctest, you can push your changes to the master repository using the
steps listed in the previous section.

31

32

Chapter 5

Albany Mailing Lists

All those interested in keeping up with Albany development should subscribe to the
following mailman lists:

• albany-checkins https://software.sandia.gov/mailman/listinfo/albany-checkins

• albany-developers https://software.sandia.gov/mailman/listinfo/albany-developers

Developers making commits with any frequency should subscribe to the nightly test results
(about 3 emails per night) since these test build/configuration/platform options that] might
not be part of your workflow.

• albany-regression https://software.sandia.gov/mailman/listinfo/albany-regression

33

34

Chapter 6

Albany Copyright and Licensing Info

Albany 2.0 has been approved for open source release with a Publically Available des-
ignation. There is a file license.txt with the full text. All other source code has a short
banner that should be added to the top of any new source code files. We will re-assert
copyright for major releases, but not minor releases.

The license is (as one should expect) copied from what is used in a typical Trilinos
package, which is a BSD-style license. Since part of the license states that the details of the
license will be included in documentation, we attach it here.

**

Albany 2.0: Copyright 2012 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,

the U.S. Government retains certain rights in this software.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the Corporation nor the names of the

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE

35

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Questions? Contact Andy Salinger (agsalin@sandia.gov)

**

36

DISTRIBUTION:

MS ,

,

1 MS 0899 Technical Library, 8944 (electronic copy)

37

38

v1.35

